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Abstract

Background: Despite low genetic variation of broilers and deployment of considerate management practices,
there still exists considerable body weight (BW) heterogeneity within broiler flocks which adversely affects the
commercial value. The purpose of this study was to investigate the role of the cecal microbiome in weight
differences between animals. Understanding how the gut microbiome may contribute to flock heterogeneity helps
to pave the road for identifying methods to improve flock uniformity and performance.

Results: Two hundred eighteen male broiler chicks were housed in the same pen, reared for 37 days, and at study
end the 25 birds with highest BW (Big) and the 25 birds with lowest BW (Small) were selected for microbiome
analysis. Cecal contents were analyzed by a hybrid metagenomic sequencing approach combining long and short
read sequencing. We found that Big birds displayed higher microbial alpha diversity, higher microbiome uniformity
(i.e. lower beta diversity within the group of Big birds), higher levels of SCFA-producing and health-associated
bacterial taxa such as Lachnospiraceae, Faecalibacterium, Butyricicoccus and Christensenellales, and lower levels of
Akkermansia muciniphila and Escherichia coli as compared to Small birds.

Conclusion: Cecal microbiome characteristics could be linked to the size of broiler chickens. Differences in alpha
diversity, beta diversity and taxa abundances all seem to be directly associated with growth differences observed in
an otherwise similar broiler flock.

Keywords: Broiler production, Broiler performance, Cecal microbiome, Flock uniformity, Flock heterogeneity,
Metagenomics, Poultry microbiome

Background
Broiler production is based upon a multiple-generation
procedure of purebred genetic lines and their crosses.
Broiler purebred lines have low heterozygosity and are
very closely related to each other [1]. Intensive selection
processes over the past five decades have decreased gen-
etic variation within purebred lines resulting in a dis-
tinctly low genetic variation of the broiler. When housed
under the same conditions and fed the same feed, one
should think that broilers would have a relatively com-
parable growth and that a certain uniformity in final

body weight (BW) could be achieved. Nevertheless, at
slaughter, variations in BW of 11–18% (Coefficient of
variation (CV) of BW) in mixed sex flocks are regularly
observed [2], and 8–10% have been reported even for
male-only flocks [3]. Poor uniformity translates to de-
creased profitability due to devaluation of carcasses not
complying with the processing plant and market specifi-
cations. At the same time, it is desirable to achieve
healthy, productive birds reaching a high final BW. The
low genetic variation is not expected to solely drive this
variation in final BW, hence other factors must also play
a role. Poor management practices or health problems
can cause some birds to have reduced access to feed and
water, but the problem with suboptimal carcass
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uniformity is not fully understood [2]. The gut micro-
biome, referring to the collective assembly of microbial
organisms inhabiting the gastrointestinal tract and the
functional potential of their genomes, is a player to also
consider with regards to carcass uniformity. The com-
position and activity of the gut microbiome is predomin-
antly shaped by dietary and environmental factors and
to a smaller extent by host genetics [4, 5] and is known
to impact animal health and productivity [6, 7]. Many
studies have investigated the link between chicken prod-
uctivity and the gut microbiota as was recently reviewed
by Carrasco et al. [8]. The Lachnospiraceae has for in-
stance, consistently been associated with high chicken
productivity [8], possibly due to the anti-inflammatory
potential of this short chain fatty acid (SCFA) producing
family [9]. Lactic acid bacteria are also associated with
chicken performance [8]. On the other hand, do the
genus Escherichia and the family Enterobacteriaceae cor-
relate frequently with low productivity due to a high
pathogenic potential within these taxa [8]. Enterobacteri-
aceae is recognized as a pro-inflammatory marker of im-
balance of the gut microbiota (dysbiosis) in poultry [10].
A few studies have investigated the cecal microbiome of
birds of extreme BWs. Lee et al. investigated the cecal
microbiota of 12 male and 12 female broiler chickens by
16S rRNA sequencing and found the genera Faecalibac-
terium and Shuttleworthia to be enriched in male chick-
ens with the highest BW after 35 days of rearing [11].
Han et al. found that Streptococcus and Akkermansia
correlated negatively with BW in cecum, whereas Bifido-
bacterium and Lactococcus in ileum and cecum respect-
ively showed a positive correlation [12].
Designing appropriate microbiome trials can be chal-

lenging. A plethora of factors are involved in shaping the
microbial gut community. If not carefully considered
and controlled, these influences can confound the study
[13, 14]. Animals housed together share microbiomes to
a large extent due to the shared local environment and
behaviours such as coprophagy and pecking/preening
activities. This can result in a so-called cage or pen effect
[14, 15], meaning that a pen-specific microbiome is de-
veloped within a single pen of animals. This
phenomenon is a potentially confounding factor that
may mask the effect under study, e.g. the effect of a feed
additive intervention on the microbiome [14]. A sound
solution is to spread out the confounding variable across
a statistically appropriate number of pens replicated in
the trial design and either housing the animals individu-
ally, pooling samples from each pen or subsampling one
or more birds from each pen. However, the downside of
these approaches are that they do not reflect the real-life
situation of broiler chickens. Broilers are managed in
flocks of several thousand within a single barn, sharing
the same environment and consuming the same

homogeneous feed. The considerable bird-to-bird vari-
ation existing within these flocks can obviously not be
explained by pen-to-pen variation. In any group of
broilers with n > 1, differences in BW are likely to be ob-
served. A Gaussian distribution of weights is further-
more expected in big groups of birds (hundreds and
more). We asked whether any differences in BW in a
homogeneously reared group would coincide with varia-
tions in the microbiome; and if so, which differences.
Therefore we designed a study to address the relation
between varying final BW of broilers and their cecal
microbiome composition when housed as a single flock
in a barn. To this end, 218 male newly hatched Ross 308
broiler chicks were placed in one pen and reared for 37
days. The group size was chosen to be big enough to
mimic the commercial production management situ-
ation, though still on a smaller, more manageable and
controlled scale. Based on BW, the 25 heaviest (desig-
nated Big) and 25 lightest (designated Small) birds were
selected, sacrificed and contents from the cecal sacs
were sampled. Investigation of the ceca were chosen due
to their high microbial diversity and density. Addition-
ally, this anatomical location has other health-related
functions, including extensive carbohydrate metabolism
[16], which may play a role for the BW phenotype. The
cecal contents were analysed by deep shot gun metage-
nomic sequencing using a combinational approach of
short and long read sequencing by employing the Illu-
mina and Oxford Nanopore Technologies (ONT) se-
quencing platforms. The aim was to provide a real-life-
relevant insight into the question of why some broilers
grow faster than others. We hypothesized that broilers
of different size have different microbiome characteris-
tics, despite being housed in the same pen.

Results
Body weight on day 37 spanned from 1514 g to 3134 g
At placement in the barn, bird mean BW was 45.5 g.
After 37 days, birds averaged 2379 g, which was about
8% below (or 2 days behind) the breeder’s perform-
ance objective of 2592 g [17]. The 25 heaviest birds
(Big) averaged 2887 g with the biggest bird achieving
3134 g. The 25 lightest birds (Small) had a mean BW
of only 1836 g and the smallest one weighing 1514 g
(Table 1; Fig. 1). The standard deviation (SD) within
the two groups was not statistically significantly dif-
ferent (115 g versus 132 g in the Big and Small birds,
respectively; p = 0.51; F-test of equal variances). How-
ever, if put on a relative scale, BW of Big birds were
actually more uniform than Small birds (CV of 4% vs.
7%). Over the 37 days period, losses and culls
amounted to 3.2%. Foot pad lesions were scored on
day 37, and there was no difference (p = 0.14) be-
tween Big and Small birds (data not shown).
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Combination of short and long read sequencing yielded
superior quality of metagenomes
All 50 cecal samples were sequenced by Illumina short
read sequencing, while 10 samples from five Big and five
Small birds were additionally sequenced by ONT long
read sequencing. DNA extraction, library preparation
and DNA sequencing using Illumina was successful for
all 50 samples and generated 4.8 to 35 Gbp of data after
trimming (Supplementary Table S3). To make sure the
ONT and Illumina sequencing results were comparable,
the same DNA was used for both platforms. The 10

ONT samples were sequenced on five Nanopore Min-
ION flowcells and, after trimming away reads less than
1000 bp, yielded between 4.1 and 15.3 Gbp of data avail-
able for metagenome assembly (Supplementary Table
S2). After dereplication, 43 high-quality (HQ) and 128
medium-quality (MQ) Metagenome Assembled genomes
(MAGs) were obtained. A number of the MAGs even as-
sembled in single contigs, representing complete ge-
nomes. The dereplicated MAG dataset captured 26.5 to
84.7% of the ONT data and 17.6 to 84.4% of the Illumina
data. Taken together, a high amount of data in the indi-
vidual MAGs was captured - with most data contained
in HQ MAGs.

Big broilers had the highest microbial diversity and
displayed microbiome uniformity
The alpha diversity (diversity within each sample) as
measured by the Shannon Index was significantly higher
in the Big birds compared to the Small birds (p = 0.017;
Fig. 2a). Beta diversity (diversity between samples) as
assessed by Redundancy Analysis (RDA) constrained to
the classification of Big versus Small chickens revealed a
strong separation between the two groups (Fig. 2b). As-
sessment of beta diversity by Principal Coordinates Ana-
lysis (PCoA) applying the Bray-Curtis dissimilarity
demonstrated a partial separation between the groups
(Fig. 2c). For the RDA as well as the PCoA plot, the
microbiomes of the Big birds displayed less bird-to-bird
variation compared to the Small birds, i.e. the micro-
biomes were more uniform in the Big birds. Testing by
pair-wise comparisons of the Bray-Curtis dissimilarities

Table 1 Descriptive statistics of body weight after 37 days of
rearing. The incongruence between the min-max values for “All”
birds (1538–3126 g) versus the Min value for Small birds (1514 g)
and Max value for Big birds (3134 g) is explained by a time-
difference of up to 6 h in between weighing #1 of all birds
leading to the sorting of the 25 heaviest and 25 lightest birds
and weighing #2 of the subset of 50 birds immediately before
sacrificing

All Small Big

n 211 25 25

Mean (g) 2379 1836 2887

Standard deviation (g) 323 132 115

Standard error of the mean (g) 22 26 23

Coefficient of variation (%) 13.56 7.16 3.98

Min (g) 1538 1514 2745

Max (g) 3126 2082 3134

Relative range (%) 67 31 13

Fig. 1 BW after 37 days of rearing for the flock of 211 birds and for the 25 lightest and 25 heaviest birds selected for microbiome analysis. Dotted
line indicates expected BW according to breeder’s performance objectives, solid lines indicate mean BW with SD. BW = body weight
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within the same size group confirmed a significantly
smaller variation between samples from the Big chickens
(p < 0.001; Fig. 2d).

Taxa across all taxonomic ranks were differentially
abundant between small and big broilers
Differences between the Big and Small chickens were in-
vestigated using a descending taxonomic rank approach,
starting from phylum rank for a high level overview,
then family, genus and ultimately the MAG level, which
is comparable to species level or in some cases even
strain level. Testing of the differentially abundant taxa
was done by calculating the fold change of log2-
transformed relative abundances of Big chickens relative
to Small chickens. Six phyla were represented across all
samples: Firmicutes, Actinobacteriota, Bacteroidota (also
known as Bacteroidetes), Verrucomicrobiota, Proteobac-
teria and Cyanobacteria. Firmicutes was the dominating
phylum both in Big birds (66 ± 13% SD) and Small birds
(58 ± 15% SD; Supplementary Table S5). Among all
phyla, Verrucomicrobiota (p = 0.004) and Proteobacteria
(p = 0.03) were more abundant in Small birds (not
shown), while no phylum was more abundant in the Big

birds. The Firmicutes:Bacteroidota (F/B) ratios were not
different between Big and Small (Fig. 3a). Four families
were more abundant in Big birds: Lachnospiraceae (p =
0.046), Acutalibacteraceae (p = 0.038), an unknown Clos-
tridia family classified as CAG-727 (p = 0.003) and a
family classified as CAG-74 (p = 0.006) from the Chris-
tensenellales order (Fig. 3b). Two families were signifi-
cantly more abundant in Small birds: Akkermansiaceae
(phylum Verrucomicrobiota; p = 0.006) and Enterobacte-
riaceae (phylum Proteobacteria; p = 0.038; Fig. 3b).
Eleven genera were more abundant in Big birds, for in-
stance Faecalibacterium (p = 0.003), Eisenbergiella (p =
0.048), Flavonifractor (p = 0.012) and Ruminococcus (p <
0.001; Fig. 4). As was also reflected on the phylum and
family level, two genera were more abundant in the
Small birds, Akkermansia (p = 0.008) and Escherichia
(p = 0.038; Fig. 4).
Five MAGs were significantly more abundant in Small

birds, while 31 MAGs had a higher abundance in Big
birds (Table 2). MAGs enriched in Small birds were one
Gemmiger MAG (p = 0.006), one Blautia MAG (p =
0.012), one Ruthenibacterium MAG (p = 0.05), Akker-
mansia muciniphila (p = 0.006) and Escherichia coli (p =

Fig. 2 a Alpha diversity (Shannon Index) of ceca of Small and Big broilers. Big birds had significantly higher diversity (p = 0.017; Wilcoxon rank
sum test). b Beta diversity (RDA ordination) plot of cecal samples constrained to the variable “Small/Big”. An almost complete separation between
the groups is observed. Less interindividual variation occur between the big birds compared to the small birds. The relative contribution
(eigenvalue) of each axis to the total inertia in the data as well as to the constrained space only, respectively, are indicated in percent at the axis
titles. c Beta diversity (PCoA) plot based on Bray-Curtis dissimilarity matrix. The relative contribution (eigenvalue) of each axis to the total inertia in
the data is indicated in percent at the axis titles. d Bray-Curtis dissimilarity in Small and Big chickens. The interindividual variation was tested
using by pair-wise comparisons of within-group Bray-Curtis dissimilarities. The values can be between 0 and 1, with 0 meaning identical
communities and 1 meaning there is no overlap in the communities. Significance was tested using non-parametric Wilcoxon rank sum test.
RDA = Redundancy Analysis. PCoA = Principal Coordinates Analysis. Solid lines indicate mean with SD
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0.036). The two latter MAGs were driving the differ-
ences as described for the Small birds on the phylum,
family and genus levels (Fig. 3+ 4). Of the 31 MAGs with
highest abundance in the Big birds, the majority were
from the Lachnospiraceae (11 MAGs) and Ruminococca-
ceae (7 MAGs). The remaining 13 MAGs were distrib-
uted to two MAGs from the Christensenellales order,
three MAGs from Butyricicoccaceae (two Butyricicoccus
and one Agathobaculum), three Acutalibacteraceae
MAGs, two Oscillospiraceae and one from Bifidobacter-
iaceae (Bifidobacterium gallinarum) and two not further
classified MAGs from the Clostridia class termed CAG-
727 (see p-values in Table 2).

Discussion
In this study, a hybrid metagenomic sequencing ap-
proach demonstrated a likely prominent role of the cecal
microbiota in broiler growth and body weight
heterogeneity.

Alpha diversity
The Big birds had a higher alpha diversity compared to
the Small birds from the same pen. Microbial diversity
of the gastrointestinal tract is a solid marker of gut
health, as mostly demonstrated in humans [18]. In con-
trast, lower diversity is a marker of dysbiosis and is a

consistent finding in patients suffering from inflamma-
tory and immunological conditions [18]. In poultry, high
diversity has also been linked to high productivity and
gut health [8]. Increased microbial diversity translates to
diversity of the microbial gene pool, which ultimately
should result in presence of different types of organisms
providing beneficial pathways to the host. The high
alpha diversity and thus improved microbiome function-
ality could therefore have contributed to the improved
growth of the Big chickens in our study.

Microbiome uniformity
We found that the Big birds had more uniform
microbiome compositions within the group of birds
than the Small birds displaying much more variable
microbiomes. Microbiome variability has previously
been linked to disease in various ecological systems
leading researchers to coin a so-called Anna Kare-
nina principle (AKP) for animal microbiomes [19,
20]. The AKP says that “all healthy microbiomes are
alike; each dysbiotic microbiome is dysbiotic in its
own way”, which is referring to the opening line
from Leo Tolstoy’s novel Anna Karenina: “All happy
families are alike, each unhappy family is unhappy
in its own way”. It means that the more similar
(high uniformity) individuals of a population are

Fig. 3 a Firmicutes/Bacteroidota ratio of Big and Small broiler chickens (p > 0.05; t-test on log2-transformed data). b Differentially abundant
families between Small and Big chickens. Differences were tested by calculating the fold change of log2-transformed relative abundances of Big
relative to Small. Solid lines indicate mean with SD
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microbiome-wise, the lower is the risk of dysbiosis
and disease within the population [20]. We found a
significantly higher microbiome uniformity (lower
beta-diversity) between the Big birds in our study
despite the shared environment with the Small birds.
This supports the hypothesis that healthy micro-
biomes (which in turn can lead to better growth) are
more similar than less healthy or even dysbiotic
microbiomes (which in turn can inhibit optimal
growth). This suggests that AKP effects can develop
within sub-populations of a larger population. The
higher microbiome uniformity of the Big birds in
our study was not statistically mirrored by a higher
BW uniformity, though the BW CV as well as the
SD were numerically lower in the Big birds. These
data support further investigation regarding the rela-
tionship between microbiome uniformity and pheno-
typic uniformity in sufficiently powered trials in
terms of sample size and replicates allowing for

measurements of feed intake, daily BW gain and feed
conversion ratio calculations.

Bacterial taxa related to health and productivity
Many taxa from Firmicutes were more abundant in the
Big chickens, but the F/B ratio was not different between
Big and Small broilers. A high F/B ratio has been associ-
ated with improved energy harvest and thus improved
productivity in production animals [21–23]. Alternatives
to antibiotic growth promoters such as probiotics and
plant extracts can increase the F/B ratio and are shown
to correlate positively with BW in broilers [22, 23]. It
has, however, been reported that the F/B ratio varies
substantially between individuals [24, 25] and the reli-
ability of the F/B ratio as an productivity marker has
been questioned [25, 26].
Several SCFA-producing taxa were dominant in the

Big chickens compared to Small. Among these were bac-
teria from Lachnospiraceae. The metabolite profiles of

Fig. 4 Significantly different genera between Big and Small broiler chickens1. Differences were tested by calculating the fold change of log2-
transformed relative abundances of Big relative to Small. Solid lines indicate mean with SD. 1 not all genera are referred to in the text
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Table 2 Significantly different MAGs in Big and Small broilers

MAG Phylum Family Genus log2FC Adjusted
p-value

Avg
Small (%)

Avg Big
(%)

Highest abundance in
Small chicken

HQ/98/3-BC04_
bin.5

Firmicutes Ruminococcaceae Gemmiger −5.19 0.006 6.19 0.17

HQ/94/0-BC04_
bin.119

Firmicutes Lachnospiraceae Blautia −3.97 0.012 0.47 0.03

MQ/83/3-
BC08_bin.49

Firmicutes Ruminococcaceae Ruthenibacterium −2 0.05 0.28 0.07

HQ/98/0-BC08_
bin.2

Verrucomicrobiota Akkermansiaceae Akkermansia −1.86 0.006 0.91 0.25

HQ/100/0-
BC01_bin.62

Firmicutes Enterobacteriaceae Escherichia −1.76 0.036 0.95 0.28

Highest abundance in
Big chicken

MQ/85/0-
BC06_bin.111

Firmicutes Clostridia CAG-
727

UBA11940 3.30616 < 0.001 0.17 0.56

MQ/83/1-
BC03_bin.150

Firmicutes Christensenellales
CAG-74

– 2.963665 < 0.001 0.12 0.33

MQ/53/0-
BC05_bin.97

Firmicutes Butyricicoccaceae Butyricicoccus 2.522999 0.005 0.07 0.14

MQ/51/2-
BC03_bin.153

Firmicutes Butyricicoccaceae Butyricicoccus 2.487598 0.003 0.1 0.19

MQ/77/1-
BC06_bin.26

Firmicutes Lachnospiraceae Blautia 2.442135 0.005 1.31 2.29

HQ/93/1-BC09_
bin.81

Firmicutes Lachnospiraceae Ruminococcus_G 2.338411 < 0.001 0.15 0.48

HQ/92/1-BC01_
bin.127

Firmicutes Lachnospiraceae Ruminococcus_G 2.267726 < 0.001 0.11 0.33

MQ/78/2-
BC01_bin.64

Firmicutes Oscillospiraceae Flavonifractor 2.137273 < 0.001 0.18 0.42

MQ/81/1-
BC05_bin.63

Firmicutes Ruminococcaceae Gemmiger 2.103554 0.006 0.15 0.42

MQ/64/0-
BC06_bin.117

Firmicutes Oscillospiraceae Flavonifractor 1.997778 < 0.001 0.14 0.39

MQ/65/2-
BC08_bin.109

Firmicutes Acutalibacteraceae Acutalibacter 1.992992 0.003 0.05 0.15

MQ/82/0-
BC01_bin.108

Firmicutes Lachnospiraceae Eubacterium_E 1.793982 0.015 0.13 0.21

HQ/95/3-BC05_
bin.99

Firmicutes Ruminococcaceae Faecalibacterium 1.738848 0.001 0.97 2.01

HQ/96/0-BC10_
bin.135

Firmicutes Clostridia CAG-
727

– 1.69629 0.03 0.47 0.89

MQ/65/0-
BC06_bin.35

Firmicutes Lachnospiraceae Eisenbergiella 1.693181 0.042 0.07 0.24

MQ/58/1-
BC03_bin.187

Firmicutes Lachnospiraceae Clostridium_M 1.670223 0.005 0.09 0.15

HQ/99/0-BC06_
bin.137

Firmicutes Ruminococcaceae Gemmiger 1.658808 0.002 0.59 1.99

MQ/75/1-
BC10_bin.88

Firmicutes Christensenellales
CAG-74

– 1.613336 0.016 0.18 0.38

MQ/56/0-
BC03_bin.169

Firmicutes Lachnospiraceae Faecalicatena 1.603117 0.026 0.1 0.15

MQ/67/1-
BC09_bin.14

Firmicutes Lachnospiraceae Fusicatenibacter 1.580042 0.036 0.08 0.14

HQ/92/1-BC08_
bin.120

Firmicutes Unknown
Lachnospiraceae

– 1.568899 0.042 0.18 0.34

HQ/97/1-BC06_ Firmicutes Ruminococcaceae Faecalibacterium 1.476226 0.002 1.1 2.12
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Lachnospiraceae varies between species, but all of them
produce SCFAs, expectedly being beneficial to the host
[9, 27]. The SCFA butyrate is specifically a critical
energy-source for the colonocytes and exerts numerous
beneficial effects, including growth promotion, anti-
microbial activity, immunomodulation and anti-
inflammatory activity; inclusively these attributes can
lead to a reduction in pathogens [28]. Of butyrate-
producing taxa with higher levels in the Big birds were
Eisenbergiella [29], Eubacterium, Faecalicatena [30] and
Flavonifractor [31]. Flavinofractor could in addition pos-
sess regulatory immunomodulatory properties [32].
Agathobaculum, a more recently isolated taxon with
promising effects due to butyrate-production [33] were
also enriched in the Big birds. Less is known about the
Acutalibacteraceae MAGs which were also more abun-
dant in the Big chickens. It is a novel and relatively
undescribed taxon [34] and to our knowledge has not
previously been identified in poultry before. MAGs of
the Gemmiger genus were also more abundant in the Big
chickens, while also one Gemmiger MAG was more
abundant in the Small. Gemmiger species are common
inhabitants of the avian intestinal tract, where they pro-
duce an array of acids including formate and butyrate
[35, 36]. Faecalibacterium was more abundant in the Big
chickens, which is in alignment with the findings of Lee
et al. who also reported an enrichment of this genus in
high BW male chickens [11]. Faecalibacterium prausnit-
zii, the only known species within the genus, is a highly
effective butyrate-producer [37] and several other re-
ports link these probiotic organisms to high chicken

productivity [8]. On the other hand, Ruthenibacterium
were more abundant in the Small birds and was recently
described as primarily lactate-producers with butyrate as
the other major SCFA end product [38]. There was an
increased presence of Butyricicoccus in the Big birds.
This taxon contains well-known butyrate-producers with
strong anti-inflammatory effects in several hosts includ-
ing broilers [39].
Among other SCFA-producing taxa enriched in the

Big chickens were Fusicatenibacter which produce for-
mate and acetate [40]. Counterintuitively, two Blautia
MAGs were more abundant in the Small and Big chick-
ens, respectively. Blautia metabolize undigested carbo-
hydrates resulting in the production of acetate [27, 41].
Microbial-derived acetate may be involved in regulating
BW and satiety [42]. Blautia were more abundant in
lean compared to fat broiler lines [43] and is considered
a keystone health-associated anti-inflammatory taxon of
the human microbiome [27]. There could be species- or
strain-level relevant differences causing different effects
in the host, which could explain the association of Blau-
tia with both the Big and the Small chickens. Import-
antly, it must also be remarked that an association
between gut bacteria and host traits cannot be used to
conclude causal relationships.
Finally, we found that the family designated as CAG-

74 from the Christensenellales order and Bifidobacter-
ium gallinarum had a higher abundance in the Big
chickens compared to Small. Christensenellales is related
to Christensenellaceae, a family strongly associated with
health in humans [44]. Christensenellaceae has also been

Table 2 Significantly different MAGs in Big and Small broilers (Continued)

MAG Phylum Family Genus log2FC Adjusted
p-value

Avg
Small (%)

Avg Big
(%)

bin.90

MQ/66/0-
BC08_bin.61

Firmicutes Ruminococcaceae Gemmiger 1.457215 0.015 0.08 0.19

MQ/89/1-
BC03_bin.47

Firmicutes Lachnospiraceae – 1.399621 0.044 0.2 0.32

HQ/96/2-BC04_
bin.170

Firmicutes Lachnospiraceae Fusicatenibacter 1.309454 0.036 0.3 0.42

MQ/68/1-
BC02_bin.193

Firmicutes Ruminococcaceae Faecalibacterium 1.307194 0.013 1.26 1.91

MQ/84/2-
BC06_bin.56

Firmicutes Butyricicoccaceae Agathobaculum 1.278165 0.037 0.17 0.23

MQ/80/0-
BC08_bin.25

Firmicutes Ruminococcaceae Gemmiger 1.25775 0.034 0.64 1.35

HQ/99/0-BC06_
bin.15

Actinobacteriota Bifidobacteriaceae Bifidobacterium 1.118436 0.044 2.79 4.76

HQ/97/0-BC05_
bin.93

Firmicutes Acutalibacteraceae UBA1417 1.030908 0.029 0.12 0.22

MQ/68/0-
BC06_bin.99

Firmicutes Acutalibacteraceae UBA1417 0.968859 0.05 0.09 0.17

MAG Metagenome Assembled Genome. MQ Medium quality genome, HQ High quality genome
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reported to increase during probiotic supplementation
in broilers [45] and was associated with high feed effi-
ciency in a study with pigs [46]. Bifidobacteria are well-
known for their beneficial effects for the host [47], yet
the specific role of B. gallinarum in broiler productivity
is to our knowledge unknown.
E. coli and A. muciniphila were both more abundant

in the Small birds. E. coli is involved in localized and sys-
temic infections in production poultry termed colibacil-
losis, which is worldwide a major cause of economic loss
and compromising of animal welfare and food safety
[48].. A. muciniphila is a mucin-degrader and a robust,
positively correlated marker of metabolic health and
leanness in humans [49]. Akkermansia has previously
been negatively correlated with BW in broilers [12].
Interestingly, the genus has also been demonstrated to
be in higher abundance in chickens with good feed effi-
ciency (FE) compared to chickens with poorer FE [50].
A. muciniphila has a regulatory role in lipid metabolism
[51], providing one possible explanation why birds with
highest A. muciniphila abundance in our study had the
lowest BW. We did not investigate fat content of the
carcasses, but it could had been a relevant parameter to
include.
Everything taken together, there was unarguably an

increased presence of taxa related to health and per-
formance in the Big chickens, which may have con-
tributed to the better growth due to anti-
inflammatory and feed utilization properties. As a fur-
ther investigation for establishing a causal relationship
between the microbiome composition and BW pheno-
type, one would need to transplant the phenotype-
associated microbiomes into germ-free chicks and
monitor the BW development.

What causes microbiome heterogeneity within a
population with shared environment?
It is well-known that age, sex, husbandry and man-
agement practices, season, circadian rhythm, geog-
raphy etc. can cause microbiome variation between
populations [13, 14]. Due to our one-pen study design
mimicking a production broiler house on a smaller
scale, the enormous microbiome differences we ob-
served between Big and Small broilers cannot be at-
tributed to such confounding effects. In a production
broiler flock, with housing of hundreds of square me-
ters, it is feasible that local shared environments
could develop among birds as they primarily segregate
in one section of the house. The birds in this study,
on the other hand, were housed in a relatively small
pen (13.5 m2) and due to coprophagy and pecking/
preening behaviour, we assume that there was a rela-
tively equal microbe sharing across the pen.

Foot pad lesion scores were not different between Big
and Small, hence this factor could be ruled out as a
major cause for growth differences between birds. Social
stress and a reduction of feed intake by lower ranking
birds can be relevant to consider. We accounted for this
by providing sufficient feeder space, approximately twice
the amount of commercial standards (i.e. 2.98 cm per
bird or 1.25 cm/kg BW). However, with our study de-
sign, individual feed intake was not measured. Thus, we
cannot rule out that stress and hierarchy factors were
contributing to variable feed intake resulting in growth
heterogeneity.
The study aimed at providing the same conditions

to each of the birds from placement to slaughter, but
differences in intestinal microbiomes may have been
seeded prior to placement in the barn. Contributions
could have been made by hen (in ovary seeding), hen
environment and egg handling (trans-shell seeding),
incubation and hatching environment (trans-shell
seeding and initial oral intake) as well as transport of
chickens to the barn (oral intake). The influence of
hatcher was minimized in this trial as all chicks came
from the same hatcher. Nevertheless, despite disinfec-
tion practices at the hatchery, some bacteria could
still have crossed the egg shell [52] during lay and
handling before disinfection, which could have shaped
the microbiome of the hatched chicks [53].
Genetics cannot be ignored as a factor in shaping the

microbiome, though the genetic effect expectedly is
smaller than the environmental [4, 5]. Residual heterozy-
gosity and polymorphisms within the broiler line can
contribute to microbiome variation and phenotypic vari-
ation [54, 55].
Ultimately, the largest influencer on microbiome

heterogeneity in individuals within a shared environ-
ment can probably be ascribed to stochastic events,
i.e. the randomness in which microbes each chick en-
counters first in its life. A self-enforcing cascade of
events might happen: some birds have by chance
poorer microbiome, leading to reduced nutrient ab-
sorption and the birds not feeling as fit as the others.
This can lead to social stress by lower ranking and a
viscous circle of reduced feed intake and picking in
the litter with increased ingestion of pathogenic and
dysbiosis-related bacteria starts. Ultimately, this leads
to an even more suboptimal microbiome. At some
point, the difference in BW itself will force further
differentiation, as larger birds are requiring more
feeder space for a longer duration of time. These
heavy broilers will be harder to push aside when
lighter birds want to make their way to the feeder
and drinker.
Beneficial early life programming of the gut micro-

biome is crucial for the development of the immune
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system, establishment of gut health and even behavior
[56, 57]. Such programming may be achieved through
probiotic delivery methods such as in ovo, trans-shell
seeding, feed additives or seeding of the chick environ-
ment. These intervention examples might also be helpful
in overcoming microbiome heterogeneity and thus BW
heterogeneity.

Conclusions
We present here a controlled study in which the gut
microbiome composition of male broilers of varying BW
housed and reared under the same conditions was inves-
tigated. Birds with highest BWs displayed microbiome
features coinciding with health benefits: higher microbial
diversity, more microbiome uniformity, higher levels of
SCFA-producing bacteria and lower levels of the
leanness-associated and pathogenic bacteria compared
to birds with the lowest BWs.
Our data indicates a strong association between broiler

flock heterogeneity and the cecal microbiome compos-
ition. Investigations of methods for establishing uniform
and beneficial microbiomes of chicks in early life with
the aim to improve flock uniformity are therefore
warranted.

Methods
Broiler management
Two hundred eighteen male, newly hatched Ross 308
broiler chickens were obtained from a commercial
hatchery (Geflügelhof Möckern, Germany). At the
hatchery, eggs were disinfected upon arrival in the
hatchery, immediately prior to placement in the incuba-
tor and again at placement in the hatcher unit on day
18. After hatch, the chicks received 1/2 a dose of Infec-
tious bronchitis vaccine (spray-on). Upon arrival in the
test facility (feedtest, Wettin-Löbejün Germany), chicks
were placed in a 13.5 m2 floor pen with mesh panels in a
cleaned and disinfected barn, which had been empty for
4 weeks prior to study start. Softwood shavings (HVT
Premiumspan Profi, Hobelspanverarbeitung GmbH, Dit-
tersdorf, Germany) served as bedding material. Water
was supplied in four bell drinkers. Feed was initially of-
fered in four round hanging feeders (40 cm diameter),
after 4 weeks the number of feeders was increased to
five. The feed consisted mainly of wheat, soybean meal,
rapeseed meal, corn and rye (from week 3), and was sup-
plemented with oil, minerals and free amino acids.
Throughout the study period, the feed was supple-
mented with a coccidiostat (Monteban G100 (active in-
gredient: narasin), by Elanco at 0.06%) as well as a
commercial phytase (HiPhos by DSM at 500 FYT/kg).
The ingredients, proportions and the feed additives were
included to mimic industry conditions. Feed and water
were available ad libitum. Temperature and light were

managed according to breeder’s recommendations along
with animal welfare requirements. At the age of 15 days,
birds were routinely vaccinated against Newcastle dis-
ease (Hipraviar) and Infectious bursal disease (Hipra-
gumboro) via drinking water. After 1 week, three birds
had to be culled due to not growing (BW < 100 g) and
obvious signs of poor health. A fourth bird was culled
due to leg deformation at 32 days of age. Another three
birds died (no necropsy conducted) within the initial 2
weeks of the study. Otherwise, there were no veterinary
interventions throughout the study. Neither feed con-
sumption nor BW during the rearing period were
recorded.

Cecal sampling
At the age of 37 days, all birds were weighed individually
and subsequently ranked in ascending order (=weighing
#1). The 25 heaviest and the 25 lightest birds were se-
lected for sampling. These 50 individuals were temporar-
ily put into smaller pens with clean bedding material
and continued on the original diet until sampling to en-
sure sufficient intestinal filling. Groups of four birds
were then forwarded to sampling. Time from placement
in the smaller pens until sacrificing was 1–6 h. After
weighing again (=weighing #2) and assignment of sample
ID, birds were stunned and exsanguinated. After open-
ing the abdominal cavity, one cecal sac per bird was
sampled. The sacs were closed by staples to prevent
leakage and transferred into labelled containers and
placed in a − 80 °C freezer. Average lag time between
slaughter and freezing of the samples was 14min. Sam-
ple containers were shipped to the analyzing laboratory
on dry ice and placed in a − 80 °C freezer until analysis.

Microbiome analyses
DNA extraction, library preparation, sequencing and
bioinformatics/statistics on metagenomic data was per-
formed by DNASense Aps (Aalborg, Denmark). To ob-
tain high quality metagenomic data, shot gun short read
deep sequencing (Illumina) was applied on all 50 cecal
samples. Ten samples from five Small and five Big birds
were additionally sequenced by long read sequencing
using Oxford Nanopore Technology (ONT) and deep
Illumina sequences used for error-correction. Each of
the samples were assembled, binned and polished indi-
vidually and dereplicated to a non-redundant set of ref-
erence Metagenome Assembled Genomes (MAGs).
These dereplicated MAGs were used as a reference data-
base and Illumina and ONT data mapped to measure
abundance across all 50 samples.

DNA extraction
The stapled cecal sacs were thawed, emptied and the
digesta homogenized in sodium phosphate buffer. DNA
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extraction was performed using the standard protocol
for FastDNA Spin kit for Soil (MP Biomedicals, USA)
with the following exceptions: 500 μL of sample, 80 μL
sodium phosphate buffer and 120 μL MT Buffer were
added to a Lysing Matrix E tube. Bead beating was per-
formed at 6 m/s for 4x40s. Gel electrophoresis using
Tapestation 2200 and Genomic DNA screentapes (Agi-
lent, USA) were used to validate product size and purity
of a subset of DNA extracts. DNA concentration was
measured using Qubit dsDNA HS/BR Assay kit (Thermo
Fisher Scientific, USA).

Illumina metagenomic library preparation and
sequencing
Sequencing libraries were prepared using the NEB Next
Ultra II DNA library prep kit for Illumina (New England
Biolabs, USA) following the manufacturer’s protocol.
The sequencing libraries were pooled in equimolar con-
centrations and diluted to 4 nM. The samples were
paired end sequenced (2x151bp) on a HiSeq (Illumina,
USA) following the standard guidelines for preparing
and loading samples on the HiSeq.

ONT metagenomic library preparation and sequencing
Sequencing libraries were prepared using the LSK109
protocol with native barcoding (Oxford Nanopore Tech-
nologies, UK) following the manufacturer’s protocol.
The sequencing libraries were sequenced on R9.4.1 flow
cells (Oxford Nanopore Technologies, UK) following the
manufacturer’s protocol. The reads were base called
using Guppy with high accuracy mode.

Metagenome assembly, quality of genomes and binning
The Illumina sequence reads were trimmed for adaptors
using cutadapt (v. 1.16, [58]). The ONT reads were
trimmed for adaptors using Porechop (v. 0.2.4, [59]).
Reads below 1000 bp were removed. The nanopore reads
were assembled independently for each sample using flye
(v. 2.6, [60]). The assembly was polished with ONT
reads using minimap2 (v. 2.12-r827 [61]), and racon (v.
1.3.3 [62]), followed by polishing with medaka (v.0.8.1,
github.com/nanoporetech/medaka). Then, finally the as-
sembly was polished with Illumina data using minimap2
(v. 2.12-r827 [61]), and racon (v. 1.3.3, [62]). The reads
were mapped back to the assembly using minimap2 (v.
2.12-r827 [61]) to generate coverage files for metage-
nomic binning. Genome binning was carried out using
metabat2 (v. 2.12.1, [63]). Genome bins were derepli-
cated using dRep (v. 2.3.2 [64]). Completeness for the
dereplicated bins was estimated using CheckM [65].
Genome bins were classified using the Genome Tax-
onomy Database (GTDB; v. 0.3.2, [66]). Genome statis-
tics were calculated using QUAST (v. 4.6.3, [67]). rRNA

sequences were extracted using barrnapp (v. 0.9, github.
com/tseemann/barrnap).
All 50 cecal samples were sequenced by Illumina short

read sequencing, while 10 samples from five Big and five
Small birds were additionally sequenced by ONT long
read sequencing. DNA extraction, library preparation
and DNA sequencing using Illumina was successful for
all 50 samples and generated 4.8 to 35 Gbp of data after
trimming (Supplementary Table S1). A negative control
DNA extraction showed very little DNA and very few
reads indicating that kit contamination was not an issue.
To make sure the ONT and Illumina sequencing results
were comparable, the same DNA was used for both plat-
forms. The 10 ONT samples were sequenced on five
Nanopore MinION flowcells and yielded an average of
19.58 Gbp raw data, which is on par with the current
state-of-art yields per flowcell. However, due to no size-
selection and an Illumina optimized DNA extraction a
large amount of data was removed in the filtering
process, especially for the samples with the lowest read
N50 (2502–5556 bp) (Supplementary Figure S1). N50 is
the shortest contig length that is needed to cover 50% of
the whole genome sequence. Hence, after trimming
away reads less than 1000 bp, between 4.1 and 15.3 Gbp
of data was available for metagenome assembly (Supple-
mentary Table S2). The individual assemblies were
highly dependent on the amount of data after sequen-
cing, but in general all assemblies were good with an
order-of-magnitude larger N50 compared to traditional
Illumina assemblies (Supplementary Table S3). The per-
centage of trimmed data mapped to each MAG category
for all 60 samples. Quality of the genomes were defined
as: HQ =High-Quality genome bin (> 90% complete & <
5% contaminated); MQ =Medium-Quality genome bin
(> 50% complete & < 10% contaminated); LQ = Low-
Quality genome bin (< 50% complete or > 10% contami-
nated). After dereplication, 43 high-quality (HQ) and
128 medium-quality (MQ) Metagenome Assembled ge-
nomes (MAGs) were obtained. A number of the MAGs
even assembled in single contigs, representing complete
genomes (Supplementary Table S4). To obtain taxonomy
and compare how similar the MAGs were to available
reference genomes we used the GTDB workflow to ob-
tain average nucleotide identity (ANI) to the closest ref-
erence genome. Most genomes were relatively novel
compared to the databases underlining the large ben-
efits of generating genomes directly from the samples.
The dereplicated MAG dataset captured 26.5 to 84.7%
of the ONT data (avg. 72.2%, Supplementary Table
S2) and 17.6 to 84.4% of the Illumina data (avg.
69.1%, Supplementary Table S1). Taken together, a
high amount of data in the individual MAGs was cap-
tured - with most data contained in HQ MAGs (Sup-
plementary Figure S2).
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Statistical analysis
Metagenomic data were analyzed and visualized through
Rstudio [68] using the ampvis2 package [69]. For differ-
ential abundance analysis the limma package was used
[70]. For redundancy analysis (RDA) the vegan package
was used [71]. Prior to downstream analyses, 618 low-
quality (LQ) MAGs were removed from the dataset,
resulting in 171 medium- and high-quality MAGs. The
LQ-MAGs were removed to reduce noise and avoid ar-
tefacts introduced by the binning procedure. No appar-
ent outlier samples were detected.
For calculation of Shannon index diversity, MAGs <

0.001 relative abundance were purged from the data set
to remove noise from ultra-low abundant MAGs and en-
sure fair comparison. Significance testing was done by
using a non-parametric Wilcoxon rank sum test.
Significance level throughout all analyses was set to

0.05. Prior to RDA and PCoA, MAGs that were not
present in more than 0.1% relative abundance in any
sample were removed. RDA data were transformed by
applying the Hellinger transformation [72]. PCoA was
based on Bray-Curtis dissimilarity matrix [73]. Bray-
Curtis values used for significance testing by non-
parametric Wilcoxon rank sum test were calculated
from all pair-wise comparisons of relative abundancies
within the same size group. For calculating fold change
of MAGs, relative abundances were log2-transformed.
Only significant MAGs > 0.1% in average abundance is
reported. F/B ratio significance testing was done by
log2-transformation and t-test in GraphPad Prism v.
8.4.2 (San Diego, CA, USA). BW of whole flock and sub-
populations were analyzed only for descriptive reasons
(mean, standard deviation (SD), coefficient of variation
(CV), minimum, maximum, relative range). Dispersion
of data from the mean is reported as SD throughout the
manuscript.
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